Table of Contents
Preface ………………………………………………………………………………………………………………….. VII
List of Figures…………………………………………………………………………………………………………XV
List of Tables………………………………………………………………………………………………………… XIX
Notation……………………………………………………………………………………………………………….. XXI
1 Introduction …………………………………………………………………………………………………… 1
1.1 Problem description………………………………………………………………………………………….. 1
1.2 Research scope ………………………………………………………………………………………………… 3
1.3 Research objective, research questions and thesis outline ……………………………………… 5
1.4 Scientific, methodological and practical contribution……………………………………………. 7
2 The vulnerability of networks ……………………………………………………………………….. 11
2.1 Introduction …………………………………………………………………………………………………… 11
2.2 The vulnerability of road networks …………………………………………………………………… 14
2.3 Other transport networks …………………………………………………………………………………. 28
2.4 Other non-transport networks…………………………………………………………………………… 34
2.5 Summary: the vulnerability of networks ……………………………………………………………. 35
3 Definitions and indicators for road network robustness …………………………………. 37
3.1 Introduction …………………………………………………………………………………………………… 37
3.2 Relation between reliability and robustness ……………………………………………………….. 37
3.3 Disturbances ………………………………………………………………………………………………….. 44
3.4 Elements of robustness……………………………………………………………………………………. 46
3.5 Robustness indicators ……………………………………………………………………………………… 50
3.6 Summary: robustness definition and indicators ………………………………………………….. 56
XII Designing Robust Road Networks
4 Evaluating the robustness of a road network …………………………………………………. 59
4.1 Introduction …………………………………………………………………………………………………… 59
4.2 Literature review: identifying vulnerable links …………………………………………………… 59
4.3 Framework for assessing robustness …………………………………………………………………. 63
4.3.1 Dynamic traffic assignment model Indy ……………………………………………………………. 66
4.3.2 Marginal Incident Computation (MIC) ……………………………………………………………… 69
4.3.3 Alternative routes …………………………………………………………………………………………… 70
4.3.4 Validation of Indy for incident situations…………………………………………………………… 72
4.4 Cost-benefit analysis ………………………………………………………………………………………. 77
4.5 Summary: framework for assessing the robustness of road networks ……………………. 82
5 Measures for improving the robustness of a road network……………………………… 83
5.1 Introduction …………………………………………………………………………………………………… 83
5.2 General description of measures ………………………………………………………………………. 83
5.3 The importance of alternative routes…………………………………………………………………. 88
5.4 The importance of unbundling traffic flows……………………………………………………….. 95
5.5 The importance of buffers and spare capacity…………………………………………………… 100
5.6 Summary: measures for improving the robustness of a road network ………………….. 104
6 Formulation of the robust network design problem ……………………………………… 107
6.1 Introduction …………………………………………………………………………………………………. 107
6.2 Transport planning in practice………………………………………………………………………… 107
6.3 The network design problem (NDP) from a mathematical/theoretical point of view 109
6.4 Formulation of the robust road network design problem ……………………………………. 116
6.5 Top level: network design ……………………………………………………………………………… 116
6.6 Lower level: route choice – dynamic user equilibrium……………………………………….. 119
6.7 Lower level: OD demand – trip choice ……………………………………………………………. 123
6.8 Summary: formulation of the robust network design problem ……………………………. 124
7 Design method – solution algorithm …………………………………………………………….. 127
7.1 Introduction …………………………………………………………………………………………………. 127
7.2 Framework of the solution algorithm………………………………………………………………. 128
7.3 Step 1: Design standards ……………………………………………………………………………….. 129
7.4 Step 2: Functional analysis…………………………………………………………………………….. 130
7.5 Step 3: Design process…………………………………………………………………………………… 130
7.5.1 Create OD-matrix …………………………………………………………………………………………. 135
7.5.2 Design optimal network for the regular situation………………………………………………. 137
7.5.3 Design a robust road network…………………………………………………………………………. 140
7.5.4 Expert modification………………………………………………………………………………………. 143
7.6 Example test network ……………………………………………………………………………………. 145
7.7 Quality of the algorithm ………………………………………………………………………………… 152
7.8 Summary: solution algorithm…………………………………………………………………………. 157
8 Application to the network of Amsterdam and surroundings ……………………….. 161
8.1 Introduction …………………………………………………………………………………………………. 161
8.2 Network description and calibration ……………………………………………………………….. 162
8.3 Step 1: Design standards for Amsterdam and surroundings ……………………………….. 164
8.4 Step 2: Functional analysis for Amsterdam and surroundings…………………………….. 168
8.5 Step 3: Design process for Amsterdam and surroundings…………………………………… 172
8.5.1 Design an optimal network for the regular situation………………………………………….. 172
Table of Contents XIII
8.5.2 Design a robust network for Amsterdam………………………………………………………….. 174
8.5.3 Expert modification………………………………………………………………………………………. 177
8.6 Summary and discussion: Application to the network of Amsterdam ………………….. 179
9 Main findings, implications and recommendations ………………………………………. 181
9.1 Introduction …………………………………………………………………………………………………. 181
9.2 Main findings……………………………………………………………………………………………….. 181
9.2.1 Main findings with respect to robust road network design …………………………………. 181
9.2.2 Main findings with respect to the solution algorithm…………………………………………. 185
9.3 Implications for stakeholders …………………………………………………………………………. 187
9.4 Recommendations for future research……………………………………………………………… 188
References …………………………………………………………………………………………………………….. 193
Appendix A: The robustness of road networks compared to the robustness of nontransport networks………………………………………………………………………………………………… 203
The human body: Cardiovascular and nervous systems ……………………………………………….. 203
Telecommunication networks …………………………………………………………………………………… 207
Appendix B: Comparison among indicators for robustness …………………………………….. 213
Appendix C: Overview of methods used in the Netherlands for robustness and
reliability analyses…………………………………………………………………………………………………. 225
Appendix D: Comparison between Indy and Dynameq…………………………………………… 231
Appendix E: Monte Carlo simulation model: SMARA……………………………………………. 237
Appendix F: A robust road network design for the area The Hague – Rotterdam…….. 241
Appendix G: Model parameters …………………………………………………………………………….. 253
Summary ………………………………………………………………………………………………………………. 257
Samenvatting ………………………………………………………………………………………………………… 265
About the author …………………………………………………………………………………………………… 273
Author’s publications…………………………………………………………………………………………….. 275
TRAIL Thesis Series ……………………………………………………………………………………………… 279
Abstract
The Dutch road network is, like many other road networks in the world, congested in the morning and evening peaks. The locations of congestion are quite often the same; this makes it relatively easy to take the delay of this regular congestion into account when planning a trip. However, as a result of disturbances, also unexpectedly large delays occur. If no measures are taken, the Dutch road network, especially in major urban areas, is becoming more and more vulnerable to disturbances like incidents. This PhD study proposes a framework for robustness analysis that includes definitions, indicators and a set of measures that can be applied to make the road network robust against incidents. Furthermore, a method is developed by which robust road networks can be designed given these measures. The method combines expert knowledge with advanced modelling techniques. The quality of the method is proven by applying it to a small test network. Finally, this thesis shows how the method can be applied to a large realistic network of Amsterdam and surroundings. The practical value of the research appears from the fact that parts of it have already been used in projects for the ANWB, Verkeer en Waterstaat, de Raad voor Verkeer en Waterstaat, DVS, de stadregio Amsterdam en Bart Egeter Advies. This research is supported by the TU Delft, TNO, NGI, Transumo and TRAIL.
Roadmap onderwerpen
Veerkrachtig ontwerp en onderhoud