Table of Contents
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Electricity infrastructures and climate change . . . . . . . . . . . . . 2
1.3 Climate change adaptation and infrastructure resilience . . . . . . . 4
1.4 Audience and contributions . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Research questions and objective . . . . . . . . . . . . . . . . . . . . 6
1.6 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 7
I Foundations 9
2 Theoretical foundations 11
2.1 Electricity infrastructures as complex socio-technical systems . . . . 11
2.2 Resilience of electricity infrastructures . . . . . . . . . . . . . . . . . 16
2.3 Vulnerability and climate resilience . . . . . . . . . . . . . . . . . . . 27
2.4 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3 Approach 31
3.1 Research framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Research scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Research methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Modeling methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Techniques and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4 Climate change and electricity infrastructures 43
4.1 Anticipated eects of climate change on global weather and sea level 43
4.2 Anticipated eects of climate change on regional weather and sea level 45
4.3 Anticipated impacts of climate change on components of the electricity infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Typology of adaptation measures . . . . . . . . . . . . . . . . . . . . 54
4.5 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
i
II Case study 1 63
5 Assessing infrastructure resilience 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Approach resilience assessment . . . . . . . . . . . . . . . . . . . . 66
5.3 Model design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4 Software implementation . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.6 Quantifying infrastructure resilience . . . . . . . . . . . . . . . . . . 75
5.7 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6 Assessing the extreme weather resilience of the Dutch transmission
infrastructure 87
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 System description the Dutch electricity infrastructure . . . . . . . 88
6.3 Technique structural vulnerability analysis . . . . . . . . . . . . . . 92
6.4 Model design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5 Software implementation . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.6 Validity of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.7 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.9 Limitations of the model . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.10 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
III Case study 2 111
7 Growing electricity networks 113
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2 Modeling the growth and evolution of infrastructure networks . . . . 114
7.3 System framing – the transmission grid as an evolving socio-technical
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.4 Model design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.5 Software implementation . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.6 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.7 Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.8 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8 Future development of the Dutch transmission infrastructure and
consequences for resilience 135
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.2 System description determinants of transmission system development in the Netherlands . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.3 Technique hybrid modeling . . . . . . . . . . . . . . . . . . . . . . 139
8.4 Model design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.5 Software implementation . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.6 Validity of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.7 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
ii
8.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.9 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
IV Case study 3 163
9 Resilience in multi-infrastructure systems 165
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.2 Literature summary infrastructure interdependency modeling . . . 166
9.3 Analysis of the ood vulnerability of a multi-infrastructure system in
North Rotterdam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9.4 Enhancing infrastructure resilience under conditions of incomplete
knowledge of interdependencies an abstract model . . . . . . . . . 176
9.5 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
V Synthesis 187
10 Multi-model ecologies 189
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
10.2 Models as single-use products . . . . . . . . . . . . . . . . . . . . . . 190
10.3 Model integration and reuse an overview . . . . . . . . . . . . . . . 191
10.4 Multi-model ecologies what and why . . . . . . . . . . . . . . . . . 193
10.5 The evolution of multi-model ecologies . . . . . . . . . . . . . . . . . 195
10.6 Analysis of a multi-model ecology the Energy Modeling Laboratory 197
10.7 Cultivating multi-model ecologies guidelines . . . . . . . . . . . . . 202
10.8 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
11 Conclusions 207
11.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
11.2 Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
11.3 Reection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
11.4 Recommendations for policy makers . . . . . . . . . . . . . . . . . . 217
11.5 Recommendations for the research community . . . . . . . . . . . . . 219
11.6 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Bibliography 223
Appendices 251
A Appendices to chapter 6 253
B Appendices to chapter 7 255
C Appendices to chapter 8 257
Summary 263
Samenvatting 267
iii
Curriculum Vitae 273
Scientic publications 275
NGInfra PhD thesis series on infrastructures 277
Abstract
Heat waves, hurricanes, floods and windstorms – recent years have seen dramatic failures in electricity infrastructures sparked by short-term departures of environmental conditions from their norms. Driven by a changing climate, such deviations are anticipated to increase in severity and/or frequency over the coming decades. This will have important implications for the systems that supply and transport our electricity. In light of this, resilience is an essential characteristic of future infrastructure systems. The notion of resilience implicitly accepts the possibility of unforeseen disruptions and failures and focuses on the capacity of systems to handle them – to survive unexpected perturbation, recover from adversity and gracefully degrade – as well as an ability to adapt and learn over time. How can we foster a climate resilient electricity infrastructure in the Netherlands? To address this question, this thesis synthesizes insights from multiple computer models using multiple modeling techniques. These models stress the nature of the electricity infrastructure as a complex and evolving system, interconnected within itself and with other infrastructures. Beyond these insights, the thesis contributes a framework, an approach and a set of tools for supporting the development of climate resilient electricity infrastructures in the Netherlands and elsewhere.