Table of Contents
List of Figures ix
List of Tables xi
Acknowledgements xiii
1 Introduction and Problem 1
1.1 Transition of energy infrastructure systems . . . . . . . . . . . . . . . . . . . . . 1
1.2 Society and technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Policy interventions in energy infrastructures . . . . . . . . . . . . . . . . . . . 4
1.4 The toolbox for informed interventions . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Exploring new ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Audience, objectives and questions . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Structure of this manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Transitions and Transition Management 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 What are transitions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 What is transition management? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 The design of a system transition in energy . . . . . . . . . . . . . . . . . . . . . 39
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3 Modelling for Energy Transition Management 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Requirements for simulating energy transitions . . . . . . . . . . . . . . . . . . 50
3.3 Modelling paradigm for simulating energy transitions . . . . . . . . . . . . . . 54
3.4 Modelling framework for simulating energy transitions . . . . . . . . . . . . . 61
3.5 Typology for transition models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6 Example case: transitions in power generation . . . . . . . . . . . . . . . . . . . 70
3.7 Hardware and software for implementing and running simulations . . . . . 73
3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4 Transitions in Power Generation 77
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Decarbonizing the electricity infrastructure . . . . . . . . . . . . . . . . . . . . 79
4.3 Overview of experiments on transition in power generation . . . . . . . . . . 86
4.4 Experiment 1: Impact of emissions trading . . . . . . . . . . . . . . . . . . . . . 87
4.5 Experiment 2: Comparison of emissions trading and carbon taxation . . . . 101
4.6 Experiment 3: Towards the design of EU ETS+ . . . . . . . . . . . . . . . . . 114
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5 LNG Markets in Transition 123
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2 Transition and Drivers of the LNG market . . . . . . . . . . . . . . . . . . . . . 124
5.3 Overview of experiments on transition in LNG markets . . . . . . . . . . . . 127
5.4 Experiment 1: The transitional spot market . . . . . . . . . . . . . . . . . . . . 129
5.5 Experiment 2: Emergent expectations on the spot market . . . . . . . . . . . 137
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6 Transitions in Consumer Lighting 143
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.2 Overview of experiments on transitions in consumer lighting . . . . . . . . . 145
6.3 Experiment 1: Transition by purchase of lamps . . . . . . . . . . . . . . . . . . 146
6.4 Experiment 2: Revisiting of the 1980s . . . . . . . . . . . . . . . . . . . . . . . . 155
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7 Analysing Simulations of Energy Transitions 161
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.2 Introduction to the case: power generation and carbon policy . . . . . . . . 162
7.3 Drawing conclusions based on simulation data . . . . . . . . . . . . . . . . . . 163
7.4 Experiment 1: Exploring the potential for a new approach . . . . . . . . . . . 168
7.5 Experiment 2: Using the Dynamic Path Approach (DPA) . . . . . . . . . . . 173
7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
8 Playing with Transitions 181
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
8.3 Introduction to the case: power generation and carbon policy . . . . . . . . 187
8.4 Experience with the power generation model . . . . . . . . . . . . . . . . . . . 189
8.5 Design of the Electricity Market Game (EMG) . . . . . . . . . . . . . . . . . . 190
8.6 Comparison of the implementation of the game and the simulation model 193
8.7 Observations and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
9 Conclusions and Discussion 203
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
9.2 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
9.3 Directions for future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Appendices 223
A Transition Literature 225
A.1 Scientific publications related to transitions . . . . . . . . . . . . . . . . . . . . . 225
A.2 Elements in transition management . . . . . . . . . . . . . . . . . . . . . . . . . . 226
A.3 Publications with simulation models of transitions . . . . . . . . . . . . . . . . 226
B Power Generation Model 233
B.1 Experiments 1, 2 & 3: Fuel and power plant definitions . . . . . . . . . . . . . 233
B.2 Experiments 1 & 2: Investment decisions using multi-criteria analysis . . . 235
B.3 Experiment 3: Investment decisions using levelized cost of electricity . . . . 238
C LNG Market Model 241
C.1 Experiment 1: Linking LNG equations to the world of agents. . . . . . . . . 241
C.2 Experiment 2: Adapting the emergent return on the spot market . . . . . . 246
C.3 Experiments 1 & 2: Linking the Java and Maple platforms . . . . . . . . . . . 246
D Consumer Lighting Model 249
D.1 Experiments 1 & 2: Parameters of the household agent . . . . . . . . . . . . . 249
D.2 Experiments 1 & 2: Lamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
D.3 Experiment 2: Luminaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
E Dynamic Path Approach 253
E.1 Development and use of software for the Dynamic Path Approach . . . . . 253
E.2 Goodness of fit indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Bibliography 259
Glossary 293
Index 295
Summary 301
Samenvatting 307
Scientific Publications 313
Curriculum Vitae 317
NGInfra PhD thesis series on infrastructures 319
Abstract
Have you ever wanted to know whether a CO2 tax outperforms the EU emissions trading scheme? Or how long it really takes markets to change and to let consumers choose differently? In this book, Emile Chappin explores simulation models to provide us with answers before policy interventions are implemented and shows that, by developing agent-based models, we can simulate energy transition. Learn about a new framework that enables us to model energy infrastructure systems as complex socio-technical systems, which evolve as a result of distributed decision making by actors in the system. See how running agent-based models let the system structure and dynamics emerge from the interactions between actors and technologies. Understand how actors, who decide on operation and investment, are responsive to policy interventions, market rules, and technological development. Find out from simulations of the electricity production sector, the LNG market, and consumer lighting that interventions in these energy systems do alter their evolution – they invoke structural, systemic change: transition. This thesis thus demonstrates that agent-based models yield a powerful tool for governments and companies: they allow them to assess the long-term effect of their policies and strategies in our complex, interconnected world.