Table of Contents

1 General Introduction …………………………………………………………………………………. 1

1.1 Incentives for this study …………………………………………………………………………… 3
1.2 Sustainability of metals? …………………………………………………………………………. 11
1.3 Study approach ………………………………………………………………………………………. 12
1.3.1 Societal and scientific relevance …………………………………………………………… 13
1.3.2 Support of decision-making …………………………………………………………………. 14
1.3.3 Character of this study …………………………………………………………………………. 15
1.4 Hypothesis and research questions ………………………………………………………….. 16
1.5 Contents of this study ……………………………………………………………………………… 16
1.5.1 Part one ……………………………………………………………………………………………… 16
1.5.2 Part two ……………………………………………………………………………………………… 16
1.6 Contributions of this study ……………………………………………………………………… 16
1.6.1 Books/Journals …………………………………………………………………………………….. 16
1.6.2 Reports ……………………………………………………………………………………………….. 16
1.6.3 Conference proceedings ……………………………………………………………………….. 16

PART ONE

2 Sustainability and Industrial Ecology ………………………………………………………… 19

2.1 Sustainability or sustainable development? ……………………………………………… 20
2.2 Achieving Sustainability …………………………………………………………………………… 22
2.2.1 Going where? ………………………………………………………………………………………. 22
2.2.2 Getting there ……………………………………………………………………………………….. 23
2.3 Industrial Ecology …………………………………………………………………………………… 25
2.4 The concept …………………………………………………………………………………………… 26
2.4.1 The industrial notion …………………………………………………………………………… 26
2.4.2 The ecological notion …………………………………………………………………………… 28
2.5 The toolbox …………………………………………………………………………………………… 31
2.5.1 Prescriptive approaches ……………………………………………………………………… 33
2.5.2 Descriptive approaches ……………………………………………………………………….. 36
2.6 The promise of Industrial Ecology …………………………………………………………… 40
2.6.1 The concept of industrial ecology …………………………………………………………. 40
2.6.2 Tools …………………………………………………………………………………………………… 42
2.7 Conclusion ……………………………………………………………………………………………. 43

3 A Description of the Metal Cycles …………………………………………………………….. 45

3.1 Metal resource cycles ……………………………………………………………………………… 46
3.2 An introduction to metal production ………………………………………………………… 48
3.2.1 Interdependence …………………………………………………………………………………. 49
3.2.2 Resilience ……………………………………………………………………………………………. 53
3.2.3 Tacit Knowledge ………………………………………………………………………………….. 57
3.3 Industrial ecology models for metal production/recycling …………………………. 59
3.3.1 Methodology ……………………………………………………………………………………….. 60
3.3.2 Goal, scope and resolution …………………………………………………………………… 61
3.3.3 Interdependence between metal production circuits ……………………………… 63
3.3.4 Interdependence in metal production processes …………………………………… 63
3.3.5 Goal and scope revisited ……………………………………………………………………… 66
3.4 Data availability ……………………………………………………………………………………… 66
3.4.1 Mass balance models …………………………………………………………………………… 66
3.4.2 Data requirements and availability ……………………………………………………….. 67
3.4.3 Data reconciliation ………………………………………………………………………………. 71
3.5 Potential for industrial ecology: convergence of methods ………………………… 74
3.6 Conclusions …………………………………………………………………………………………… 77

4 A Prescription for the Metal Cycles ………………………………………………………….. 79

4.1 Metal ecology …………………………………………………………………………………………. 80
4.2 Goals for ‘sustainable’ metal metabolism ………………………………………………… 80
4.3 Dynamics in the resource cycles ……………………………………………………………… 82
4.4 The dilution of metals …………………………………………………………………………….. 83
4.4.1 Interaction with the societal cycles ……………………………………………………….. 84
4.4.2 Interaction with the technological cycle: Metal recycling ……………………….. 86
4.4.3 Discussion …………………………………………………………………………………………… 89
4.5 The role of metallurgy in closing the resource cycles ……………………………….. 90
4.5.1 Waste managers: Adaptive waste management strategy ………………………… 90
4.5.2 Product designers: Design for metallurgy strategy ………………………………… 95
4.5.3 Metallurgists: New approaches to process control and design ………………… 97
4.5.4 Discussion …………………………………………………………………………………………. 101
4.6 Controlling the resource cycles ………………………………………………………………. 102
4.6.1 Integrated control of the metal resource cycles …………………………………… 105
4.6.2 Metal resource cycles as self-organizing feedback systems ………………….. 105
4.6.3 Feedforward control of resource cycles ………………………………………………. 111
4.6.4 Hybrid Feedback and Feedforward control …………………………………………. 112
4.6.5 Discussion …………………………………………………………………………………………. 115
4.7 Conclusion ………………………………………………………………………………………….. 115

5 Case Study: Lead Production …………………………………………………………………. 117

5.1 Why lead production? …………………………………………………………………………… 118
5.1.1 Sources ……………………………………………………………………………………………. 118
5.1.2 Lead toxicity ……………………………………………………………………………………… 119
5.1.3 Legislation ………………………………………………………………………………………… 120
5.2 Modeling the metal cycles ……………………………………………………………………. 121
5.2.1 Bottom-up approach ………………………………………………………………………… 121
5.2.2 Flowcharts of the metal cycles …………………………………………………………… 122
5.2.3 Simulations ……………………………………………………………………………………… 124
5.3 Detoxification strategy – Lead-free solders ……………………………………………. 126
5.3.1 Lead-free solder options …………………………………………………………………… 127
5.3.2 Metallurgist …………………………………………………………………………………….. 128
5.3.3 Product designer and manufacturer …………………………………………………… 133
5.3.4 Waste manager ………………………………………………………………………………… 136
5.3.5 Policy-maker and Legislator ……………………………………………………………… 137
5.4 Containment strategy – Cleaner recycling ……………………………………………… 139
5.4.1 Policy-maker and Legislator ……………………………………………………………… 141
5.4.2 Waste manager ……………………………………………………………………………….. 144
5.4.3 Metallurgist …………………………………………………………………………………….. 144
5.4.4 Product designer and manufacturer …………………………………………………… 146
5.5 Discussion …………………………………………………………………………………………… 148
5.5.1 Linking decision-making ……………………………………………………………………. 148
5.5.2 Capturing interdependence ………………………………………………………………. 148
5.5.3 Closing the resource cycles, a dynamic problem …………………………………. 149
5.5.4 A further phase-out of lead ……………………………………………………………….. 149
5.6 Conclusion ………………………………………………………………………………………….. 152

6 Synthesis and Conclusions …………………………………………………………………… 153

6.1 Sustainability of industrial ecology ………………………………………………………… 154
6.2 Technological knowledge, a bottleneck for sustainability? ………………………. 155
6.3 The role of models to coordinate decision-making ………………………………… 156
6.4 Can industrial ecology models provide the necessary knowledge? …………… 158
6.5 Conclusions …………………………………………………………………………………………. 159

7 References …………………………………………………………………………………………… 165

PART TWO

A Metal Production Flowcharts ………………………………………………………………… 189
A.1 Introduction …………………………………………………………………………………………. 190
A.2 Bismuth production and recycling profile …………………………………………….. 192

Abstract

Voor dit onderzoek is helaas geen abstract beschikbaar.

Download Paper
Terug naar overzicht