Table of Contents
Table of contents
Preface iii
Summary vii
List of Symbols and Abbreviations xiii
1 The Flexible port: An introduction 1
1.1 Ports as risky businesses . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 The changing world around us . . . . . . . . . . . . . . . . . . . 1
1.1.2 Developments in the port sector . . . . . . . . . . . . . . . . . . 1
1.1.3 Inadequate infrastructure . . . . . . . . . . . . . . . . . . . . . 2
1.1.4 Risky investments . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Setting the background . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Framing the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Research design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.2 Research approach and strategies . . . . . . . . . . . . . . . . . 11
1.5 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Contributions and limitations of the research . . . . . . . . . . . . . . . 16
1.6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6.2 Some limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 Uncertainty surrounding ports 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Implications of uncertainty for ports . . . . . . . . . . . . . . . . . . . 19
2.2.1 Obsolete ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Very costly adaptations . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Less costly adaptations . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Uncertainty and its dimensions . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 De_nition of uncertainty . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Location of uncertainty . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.3 Level of uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.4 Nature of uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Ports as engineering systems . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.1 Engineering systems . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 External inuences . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.3 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 Recent trends and impacts on port planning . . . . . . . . . . . . . . . 37
2.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.2 Continuing globalization and containerization . . . . . . . . . . 38
2.5.3 Changing functions and scales . . . . . . . . . . . . . . . . . . . 39
2.5.4 Changing actors . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.5 Changing technology . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.6 Increasing attention for environment and safety . . . . . . . . . 41
2.6 Treatment of uncertainty during planning . . . . . . . . . . . . . . . . 42
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3 Traditional approaches for port planning 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Research related to port planning . . . . . . . . . . . . . . . . . . . . . 45
3.3 Port Masterplanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1 Port Master Plan . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.2 Layout and capacity of infrastructure . . . . . . . . . . . . . . . 49
3.3.3 Forecasting demand . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.4 Role of scenarios in forecasting . . . . . . . . . . . . . . . . . . 52
3.3.5 Examining exibility in some Master Plans . . . . . . . . . . . . 55
3.4 Design of port infrastructure . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.1 Approach to design . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.2 Design concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5 Project appraisal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.2 Project appraisal at PoR . . . . . . . . . . . . . . . . . . . . . . 60
3.6 Dealing with uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6.2 Design phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6.3 Realization phase . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.6.4 Exploitation phase . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4 Flexibility concepts in ports 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Flexibility as a solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.1 A perspective on uncertainty and exibility in
infrastructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.2 Flexibility and adaptability . . . . . . . . . . . . . . . . . . . . 72
4.2.3 Some exibility-related concepts . . . . . . . . . . . . . . . . . . 72
4.3 Flexibility, actions, and real options . . . . . . . . . . . . . . . . . . . . 74
4.3.1 Some relevant terms . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.2 Types of exibility . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.3 Strategic approaches for exibility . . . . . . . . . . . . . . . . . 75
4.4 A framework for exibility . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.1 The port as a three-layer infra system . . . . . . . . . . . . . . . 80
4.4.2 Desirable characteristics in each layer . . . . . . . . . . . . . . . 82
4.4.3 Flexibility available in each layer . . . . . . . . . . . . . . . . . 83
4.5 Identifying exibilities in projects . . . . . . . . . . . . . . . . . . . . . 86
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5 A framework for managing uncertainty 91
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Adaptive Port Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.1 APP Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.2 De_nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.3 Steps in Adaptive Port Planning . . . . . . . . . . . . . . . . . 95
5.2.4 Planning strategies . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2.5 Comparison of traditional and adaptive planning . . . . . . . . 100
5.2.6 Some remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3 Tools and techniques for APP . . . . . . . . . . . . . . . . . . . . . . . 103
5.3.1 Brainstorm sessions . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3.2 Scenario based approach . . . . . . . . . . . . . . . . . . . . . . 104
5.3.3 Probabilistic approaches . . . . . . . . . . . . . . . . . . . . . . 106
5.3.4 Exploratory Modelling and Analysis . . . . . . . . . . . . . . . . 106
5.4 APP applied to port expansion project MV2 . . . . . . . . . . . . . . . 108
5.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.4.2 Adaptive Port Planning . . . . . . . . . . . . . . . . . . . . . . 110
5.4.3 Adaptive port plan . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6 Flexibility in port infrastructure 129
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2 Brainstorm session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2.2 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.2.3 Idea-generating session . . . . . . . . . . . . . . . . . . . . . . . 132
6.3 Discussion of results: Survey . . . . . . . . . . . . . . . . . . . . . . . . 133
6.4 Discussion of results: Ideas-generating session . . . . . . . . . . . . . . 134
6.4.1 Strategies for exibility . . . . . . . . . . . . . . . . . . . . . . . 134
6.4.2 New approaches to planning and design . . . . . . . . . . . . . . 137
6.4.3 Business model . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.5 Flexibility in quay walls at PoR . . . . . . . . . . . . . . . . . . . . . . 141
6.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.5.2 Traditional structures . . . . . . . . . . . . . . . . . . . . . . . . 141
6.5.3 Generic structures . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.5.4 Flexible structures . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.5.5 Reuse as a exibility objective . . . . . . . . . . . . . . . . . . . 146
6.6 Reasons for non-implementation of exibility . . . . . . . . . . . . . . . 148
6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7 Valuing exibility 155
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.2 Evaluation during APP . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.3 Some essential aspects of exibility . . . . . . . . . . . . . . . . . . . . 157
7.4 Flexibility in relation to port projects . . . . . . . . . . . . . . . . . . . 159
7.4.1 Managerial exibility in port projects . . . . . . . . . . . . . . . 159
7.4.2 Flexibility `in’ port projects . . . . . . . . . . . . . . . . . . . . 161
7.5 An investigation into valuation methods . . . . . . . . . . . . . . . . . 162
7.5.1 Discounted Cash Flow methods (DCF) . . . . . . . . . . . . . . 162
7.5.2 Scenario analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.5.3 Cost-Bene_t Analysis (CBA) . . . . . . . . . . . . . . . . . . . 164
7.5.4 Decision tree analysis . . . . . . . . . . . . . . . . . . . . . . . . 165
7.5.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.6 Real Options Analysis (ROA) . . . . . . . . . . . . . . . . . . . . . . . 167
7.6.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.6.2 Limitations of ROA for port projects . . . . . . . . . . . . . . . 169
7.7 Selection of an evaluation method . . . . . . . . . . . . . . . . . . . . . 171
7.7.1 Requirements from the method . . . . . . . . . . . . . . . . . . 171
7.7.2 Comparison of the methods . . . . . . . . . . . . . . . . . . . . 173
7.7.3 Value of real-options thinking . . . . . . . . . . . . . . . . . . . 176
7.8 Flexibility requirements in contracts . . . . . . . . . . . . . . . . . . . . 177
7.9 Application of valuation methods to projects in PoR . . . . . . . . . . 179
7.9.1 Terminal expansion at the Maasvlakte . . . . . . . . . . . . . . 179
7.9.2 MultiCore pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.9.3 Common-carrier steam pipe in Rotterdam . . . . . . . . . . . . 181
7.9.4 Expansion of coal handling capacity in existing port . . . . . . . 181
7.9.5 Multi-functional quay wall . . . . . . . . . . . . . . . . . . . . . 182
7.10 Illustrative case: Valuing `exibility through standardization’ . . . . . . 183
7.10.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.10.2 Economic lifetime of mooring dolphins . . . . . . . . . . . . . . 183
7.10.3 Evaluating exibility . . . . . . . . . . . . . . . . . . . . . . . . 184
7.10.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.10.5 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.11 Illustrative case: Valuing `exibility through margins in design’ . . . . . 187
7.11.1 Background and problem de_nition . . . . . . . . . . . . . . . . 187
7.11.2 Evaluating exibility . . . . . . . . . . . . . . . . . . . . . . . . 188
7.11.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.11.4 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.12 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
8 Monitoring the port environment 193
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.2 Setting up a monitoring and trigger system . . . . . . . . . . . . . . . . 194
8.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.2.2 Monitoring and forecasting . . . . . . . . . . . . . . . . . . . . . 195
8.2.3 Uncertainty in forecasts: Con_dence and prediction intervals . . 197
8.2.4 Selection of a method . . . . . . . . . . . . . . . . . . . . . . . . 198
8.3 Monitoring major uncertainties in a port project . . . . . . . . . . . . . 199
8.3.1 Monitoring in ports . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.3.2 Lower or higher demand throughput . . . . . . . . . . . . . . . 199
8.3.3 Change in policies . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.3.4 Mega vessels and crane productivity . . . . . . . . . . . . . . . 202
8.3.5 Modal shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
8.3.6 Non-compliance with standards . . . . . . . . . . . . . . . . . . 209
8.3.7 Dealing with wildcards . . . . . . . . . . . . . . . . . . . . . . . 210
8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9 Some illustrative cases from the port sector 213
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
9.2 Case 1: Planning the Europort area for 2045 . . . . . . . . . . . . . . . 214
9.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.2.2 Step Ia: Project description and objectives . . . . . . . . . . . . 214
9.2.3 Step Ib: De_ne strategy and formulate alternatives . . . . . . . 215
9.2.4 Step IIa: Scenario development . . . . . . . . . . . . . . . . . . 217
9.2.5 Scenario narratives . . . . . . . . . . . . . . . . . . . . . . . . . 220
9.2.6 Step IIb: Scenario analysis . . . . . . . . . . . . . . . . . . . . . 222
9.2.7 Step V: Set up a monitoring system . . . . . . . . . . . . . . . . 225
9.2.8 Discussion of the case . . . . . . . . . . . . . . . . . . . . . . . . 226
9.3 Case 2: Planning for a quay wall construction project . . . . . . . . . . 227
9.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
9.3.2 Step Ia: Project description and objectives . . . . . . . . . . . . 227
9.3.3 Step Ib: De_ne strategy and formulate alternatives . . . . . . . 228
9.3.4 Step II: Identify uncertainties . . . . . . . . . . . . . . . . . . . 229
9.3.5 Step III: Make the plan exible and robust . . . . . . . . . . . . 230
9.3.6 Step IV: Evaluate and select alternative . . . . . . . . . . . . . 231
9.3.7 Step V: Set up a monitoring system and Step VI: Contingency
planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
9.3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
9.4 Case 3: Spatial planning for a strategic port area . . . . . . . . . . . . 235
9.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
9.4.2 Step Ia: Project description and objective . . . . . . . . . . . . 235
9.4.3 Step Ib: De_ne strategy and formulate alternatives . . . . . . . 236
9.4.4 Step II: Identify uncertainties . . . . . . . . . . . . . . . . . . . 237
9.4.5 Step III: Make the plan exible and robust . . . . . . . . . . . . 238
9.4.6 Step IV: Evaluate and select alternatives . . . . . . . . . . . . . 238
9.4.7 Step V: Set up a monitoring system . . . . . . . . . . . . . . . . 241
9.4.8 Step VI: Contingency planning for the selected alternative . . . 241
9.4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
9.5 Case 4: Flexible infrastructure for the temporary Inner Lake at MV2 . 243
9.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
9.5.2 Step Ia: Project description and objectives . . . . . . . . . . . . 243
9.5.3 Step Ib: De_ne strategy and formulate alternatives . . . . . . . 244
9.5.4 Step II: Identify uncertainties . . . . . . . . . . . . . . . . . . . 245
9.5.5 Step III: Make the plan exible and robust . . . . . . . . . . . . 245
9.5.6 Step IV: Evaluate and select alternatives . . . . . . . . . . . . . 247
9.5.7 Selected alternatives . . . . . . . . . . . . . . . . . . . . . . . . 251
9.5.8 Step V: Set up a monitoring system & Step VI: Contingency
planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
9.5.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
9.6 Evaluation of the method . . . . . . . . . . . . . . . . . . . . . . . . . 257
10 Implementing Adaptive Port Planning 259
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
10.1.1 Some drivers, barriers, and enablers of exibility . . . . . . . . . 260
10.1.2 Barriers to APP . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
10.2 Port industry and port projects . . . . . . . . . . . . . . . . . . . . . . 261
10.2.1 Nature of port industry . . . . . . . . . . . . . . . . . . . . . . . 261
10.2.2 Nature of port projects . . . . . . . . . . . . . . . . . . . . . . . 261
10.2.3 Traditional roles for actors . . . . . . . . . . . . . . . . . . . . . 262
10.3 APP and traditional practices . . . . . . . . . . . . . . . . . . . . . . . 262
10.4 Cost of uncertainty and exibility . . . . . . . . . . . . . . . . . . . . . 264
10.5 APP and innovation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
10.5.1 Types of innovation . . . . . . . . . . . . . . . . . . . . . . . . . 265
10.5.2 Innovation in engineering design . . . . . . . . . . . . . . . . . . 266
10.6 APP and sustainability . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
10.7 Addressing the barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
10.7.1 Changed mind-set . . . . . . . . . . . . . . . . . . . . . . . . . 268
10.7.2 New roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
10.7.3 Impetus to innovation . . . . . . . . . . . . . . . . . . . . . . . 270
10.7.4 Comprehending the relationship of exibility to sustainability . 271
10.7.5 Flexible organizational procedures and new tools . . . . . . . . 271
10.8 Role of actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
10.8.1 Government . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
10.8.2 Port Authorities . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
10.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
11 Conclusions and reections 277
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
11.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
11.3 Answers to the research questions . . . . . . . . . . . . . . . . . . . . . 279
11.4 Case studies and lessons learned . . . . . . . . . . . . . . . . . . . . . . 285
11.5 Evaluation of the proposed method . . . . . . . . . . . . . . . . . . . . 288
11.5.1 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
11.5.2 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
11.6 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
11.7 In conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Appendix A Agenda for Brainstorm Sessions in 2008 & 2010 327
Appendix B Survey Questionnaire 329
Appendix C Decision Tree Analysis 333
Appendix D Binomial Lattices 335
Appendix E Input for the Business Case 339
Appendix F Alternatives for the Inner Lake at Maasvlakte 2 343
Samenvatting 347
Curriculum Vitae 353
Abstract
Ports are beset with many uncertainties about their futures. They are confronted with new demands in terms of functions and scales, new external constraints, and changed expectations. The inability to adequately meet these demands can mean costly adaptations for a port, or loss of cargo and competitive position. A plausible reason is that the traditional practices of port planning have remained static in this dynamic world. Traditional port planners do not habitually think in terms of uncertainty, and therefore propose inflexible plans and designs based on deterministic forecasts. Clearly, a new approach is required. Flexibility helps a port to adapt to a wide range of exogenous developments. This is possible at all levels of a port infrastructure system: in its physical infrastructure, its procedures and operations, and the services it provides. This thesis proposes a method called Adaptive Port Planning (APP). Real-life case studies have established that APP can accommodate diverse planning needs and deliver flexible and robust solutions that can better withstand the vagaries of the future. In reality there are barriers, however. Adoption and successful implementation of APP by organizations involved in port planning and design faces many barriers. The conservative port industry, the nature of port projects constrained by legal procedures that limit flexibility, the traditional role assigned to an engineer doing the planning, the organizational culture that leaves little room for new techniques, the extra investments associated with flexible designs, and the fact that innovation is low priority in times of uncertainty, all represent barriers. A ‘strategic planner’ is required: a generalist who can take a holistic approach, understand the tasks of an engineer, economist, manager, and a policymaker, and is able to communicate with the many disciplines in his planning team. He must be able to integrate their knowledge, incorporate uncertainty considerations in standards and projects, seek innovative flexible solutions, and justify them to the authorities.
Roadmap onderwerpen
Dit proefschrift valt onder de volgende onderwerpen van de roadmap Veerkrachtig ontwerp en onderhoud
Klimaatadaptatie en Duurzaamheid
Cross-Sectorale Samenwerking en Integratie
Holistische en Visionaire Planning
Schaarste en Efficiënt Resourcebeheer