Table of Contents

Preface …………………………………………………………………………………………………………….. vii
Contents …………………………………………………………………………………………………………….. ix
1. Introduction ……………………………………………………………………………………………….. 1
1.1 Emergency evacuation and transportation models …………………………………… 2
1.2 Research scope …………………………………………………………………………………… 4
1.3 Research relevance and contributions ……………………………………………………. 5
1.3.1 Theoretical contributions …………………………………………………………… 6
1.3.2 Practical contributions ………………………………………………………………. 7
1.4 Thesis outline …………………………………………………………………………………….. 7
2. Evacuation Behaviour, Modelling Paradigms, and Current Practices and their
Suitability …………………………………………………………………………………………………. 11
2.1 Introduction ……………………………………………………………………………………… 12
2.2 Historic perspective on evacuation transportation models ………………………. 13
2.3 Traveller behaviour under evacuation conditions ………………………………….. 16
2.3.1 Psycho-behavioural research and empirical observations …………….. 17
2.3.2 Discussion …………………………………………………………………………….. 19
2.4 Travel demand modelling …………………………………………………………………… 20
2.4.1 Sequential travel demand model ………………………………………………. 20
2.4.2 Simultaneous travel demand model…………………………………………… 24
2.4.3 Discussion …………………………………………………………………………….. 27
2.5 Trip distribution modelling ………………………………………………………………… 28
2.5.1 Factors determining type of evacuation destination …………………….. 29
2.5.2 Destination choice modelling …………………………………………………… 29
2.5.3 Discussion …………………………………………………………………………….. 30
2.6 Traffic assignment modelling ……………………………………………………………… 31
2.6.1 Pre-trip route choice models …………………………………………………….. 31
2.6.2 En-route route choice models …………………………………………………… 33
x
2.6.3 Hybrid route choice models …………………………………………………….. 33
2.6.4 Discussion …………………………………………………………………………….. 34
2.7 Concluding remarks ………………………………………………………………………….. 36
3. A Mathematical Traffic Model for Regional Evacuations …………………………… 39
3.1 Introduction ……………………………………………………………………………………… 40
3.1.1 Shortcomings reviewed …………………………………………………………… 40
3.1.2 Level of analysis …………………………………………………………………….. 41
3.2 Conceptual framework ………………………………………………………………………. 41
3.3 Model formulation …………………………………………………………………………….. 43
3.3.1 Departure time choice model……………………………………………………. 44
3.3.2 Destination and route choice model ………………………………………….. 45
3.3.3 Special cases ………………………………………………………………………….. 51
3.3.4 Dynamic network loading model and road dynamics ………………….. 52
3.3.5 Heterogeneous travel behaviour ……………………………………………….. 53
3.4 Test example …………………………………………………………………………………….. 54
3.4.1 Network and evacuation description …………………………………………. 54
3.4.2 Experimental setup …………………………………………………………………. 55
3.4.3 Numerical results ……………………………………………………………………. 56
3.5 Concluding remarks ………………………………………………………………………….. 61
4. Impact of Variations in Travel Demand and Network Supply Factors ………… 63
4.1 Introduction ……………………………………………………………………………………… 64
4.2 Case study ………………………………………………………………………………………… 65
4.2.1 Case study description …………………………………………………………….. 65
4.2.2 Base scenario …………………………………………………………………………. 65
4.2.3 Experimental setup …………………………………………………………………. 67
4.2.4 Means of analysis …………………………………………………………………… 68
4.3 Trip generation …………………………………………………………………………………. 69
4.3.1 Sensitivity range …………………………………………………………………….. 69
4.3.2 Numerical results ……………………………………………………………………. 70
4.4 Departure times ………………………………………………………………………………… 74
4.4.1 Sensitivity range …………………………………………………………………….. 74
4.4.2 Numerical results ……………………………………………………………………. 74
4.5 Traffic information ……………………………………………………………………………. 78
4.5.1 Sensitivity range …………………………………………………………………….. 78
4.5.2 Numerical results ……………………………………………………………………. 78
4.6 Traveller compliance …………………………………………………………………………. 82
4.6.1 Sensitivity range …………………………………………………………………….. 82
4.6.2 Numerical results ……………………………………………………………………. 83
4.7 Road capacities …………………………………………………………………………………. 87
4.7.1 Sensitivity range …………………………………………………………………….. 87
xi
4.7.2 Numerical results ……………………………………………………………………. 87
4.8 Free speeds ………………………………………………………………………………………. 91
4.8.1 Sensitivity range …………………………………………………………………….. 91
4.8.2 Numerical results ……………………………………………………………………. 94
4.9 Discussion and practical implications ………………………………………………….. 95
4.10 Concluding remarks ………………………………………………………………………….. 97
5. Optimal Evacuation Instructions and the Role of Traveller Compliance …….. 99
5.1 Introduction ……………………………………………………………………………………. 100
5.2 Studies on traveller compliance behaviour …………………………………………. 101
5.3 Optimization approach …………………………………………………………………….. 102
5.3.1 Optimization objective ………………………………………………………….. 102
5.3.2 Optimization framework ……………………………………………………….. 103
5.4 Case study ………………………………………………………………………………………. 104
5.4.1 Case study description …………………………………………………………… 104
5.4.2 Experimental setup ……………………………………………………………….. 106
5.5 Impact of full compliance assumption ……………………………………………….. 107
5.5.1 Analysis setup ………………………………………………………………………. 107
5.5.2 Numerical results ………………………………………………………………….. 108
5.6 Impact of anticipating partial compliance …………………………………………… 112
5.6.1 Analysis setup ………………………………………………………………………. 112
5.6.2 Numerical results ………………………………………………………………….. 112
5.7 Discussion and practical implications ………………………………………………… 116
5.8 Concluding remarks ………………………………………………………………………… 118
6. Synthesis, Implications, and Future Research Directions ………………………….. 121
6.1 Synthesis and main findings ……………………………………………………………… 122
6.2 Research implications ………………………………………………………………………. 126
6.3 Future research directions ………………………………………………………………… 127
Bibliography ……………………………………………………………………………………………………. 133
Appendix A. Traffic Assignment Model Implementation ………………………………….. 147
Appendix B. Evacuation Plan Optimization Heuristic ………………………………………. 151
Summary ………………………………………………………………………………………………………… 155
Samenvatting (Dutch summary) ………………………………………………………………………. 159
xii
Author’s Biography …………………………………………………………………………………………. 163
Author’s Publications ………………………………………………………………………………………. 165
TRAIL Thesis Series ……………………………………………………………………………………….. 169

Abstract

Regional evacuation planning is complex and timely. These planning studies can be assisted by a transportation model. In this thesis, we investigate the requirements for such a model, and develop, implement, and test a new model, called EVAQ, which meets these requirements. Two case studies show how EVAQ can be used to assess the success and robustness of an existing evacuation plan, as well as design an optimal plan anticipating uncertainty in traveller compliance behaviour. The analyses yield a number of practical recommendations to improve evacuation planning.

Roadmap onderwerpen

Veerkrachtig ontwerp en onderhoud

Terug naar overzicht